Translate

Météo

MeteoMedia

19 avr. 2011

Le sang

Le sang est un liquide vital qui circule continuellement dans les vaisseaux sanguins et le coeur.
Ce liquide sert à diffuser le dioxygène (O2) et les éléments nutritifs nécessaires aux processus vitaux de tous les tissus du corps, et à transporter les déchets tels que le dioxyde de carbone (CO2) ou les déchets azotés vers les sites d'évacuation (intestins, reins, poumons). Il sert également à amener aux tissus les cellules et les molécules du système immunitaire, et à diffuser les hormones dans tout l’organisme.
C’est la moelle osseuse qui produit les cellules sanguines au cours d’un processus appelé hématopoïèse.

Éléments figurés
  • Érythrocytes ou hématies ou globules rouges (à peu près 99 %). Elles ne possèdent ni noyau ni organites, donc ne sont pas des cellules proprement dites. Elles contiennent l’hémoglobine (13 des composants du cytoplasme) qui permet de transporter l’oxygène ainsi que le fer mais aussi le dioxyde de carbone ou le monoxyde de carbone. Leur durée de vie est de 120 jours et leur destruction est opérée par le foie, la rate ou la moelle osseuse.
  • Leucocytes ou globules blancs (0,2 %), qui servent dans le système immunitaire à détruire les agents infectieux. Les leucocytes sont un ensemble hétéroclite de cellules :
    • les granulocytes ou polynucléaires (neutrophiles, éosinophiles, basophiles) ;
    • les lymphocytes ;
    • les monocytes.
  • Thrombocytes ou plaquettes sanguines ou plaquettes (0,6 - 1,0 %), responsables de la formation du clou plaquettaire débutant la coagulation sanguine. Ce ne sont pas des cellules car elles ne contiennent pas de noyau, mais des fragments de cytoplasme provenant de leurs précurseurs, les mégacaryocytes (cellules géantes de la moelle osseuse).
Ces éléments figurés constituent 45 % du sang entier (voir hématocrite), ce sont toutes les cellules contenues dans le sang. Les 55 % restants constituent le plasma sanguin, un liquide jaunâtre qui est la phase liquide et sert de suspension pour le sang.

Plasma sanguin
Le plasma est la composante liquide du sang dans laquelle baignent les éléments figurés ; cependant il faut bien comprendre que les éléments figurés ne font pas partie du plasma. Il est constitué d’eau, d’ions et de différentes molécules qui sont ainsi transportées à travers l’organisme. Il faut encore le distinguer du sérum sanguin dont la définition est un peu différente de celle du plasma sanguin.
Voici les principales molécules du soluté du plasma : (le solvant étant bien évidemment l'eau)
  • le glucose ;
  • les lipides ;
  • les hormones (qui peuvent être des protéines, des acides aminés modifiés, des stéroïdes, ou des lipides modifiés dont les prostaglandines et les thromboxanes) ;
  • des protéines du complément qui ont un rôle majeur dans l’initiation de la réponse immunitaire et de l’inflammation ;
  • des protéines de la coagulation sanguine (les facteurs de coagulation).
Fonctions
  • Une fonction de transport : Le sang (liquide circulant) assure une double fonction de transport, il distribue l’oxygène et les nutriments nécessaires au fonctionnement et à la survie de toutes cellules du corps et en même temps, récupère le dioxyde de carbone et les déchets (urée) qui résultent de l’activité de tout organe vivant ;
  • Le sang est constitué d’un liquide presque incolore très riche en eau (le plasma) dans lequel baignent des globules rouges, des globules blancs et des coagulants ;
  • Le sang s’enrichit en nutriments et reçoit une grande partie de l’eau contenue dans les aliments ;
  • Le sang se débarrasse des déchets collectés (dioxyde de carbone, etc) et s’enrichit en oxygène dans les poumons ;
  • Le sang se débarrasse de son excès d’eau ; l’urine (de l’eau contenant des déchets) est « fabriquée » par les reins ;
  • Seuls les globules rouges, qui contiennent de l’hémoglobine, donnent au sang sa couleur rouge. Leur nombre est considérable (4 500 000 par mm3 de sang) et leur fonction essentielle est le transport de l’oxygène et du dioxygène. Ces derniers se fixent en effet sur l’hémoglobine, facilités par sa forme de disque biconcave (région centrale : 0.8µm, région périphérique : 2.6µm) la plus apte a une fixation maximale.
Sang chez l’être humain

Le sang chez l'Homme représente 7 à 8 % de sa masse corporelle.
Les artères conduisent le sang du cœur vers les poumons et vers tous les autres organes. Elles sont le réservoir de pression du système cardio-vasculaire.
Les veines ramènent le sang des poumons ou de tout autre organe vers le cœur. La proportion volumique de sang y est plus grande que dans les artères. Elles servent de réservoir sanguin à la pompe cardiaque.
L'ensemble du flux sanguin passe par les poumons avant de repartir vers un autre organe.
Le cœur est une pompe foulante et aspirante qui éjecte le sang dans les vaisseaux de l’appareil circulatoire et qui contribue au retour veineux.
Le sang circule, toujours dans le même sens, à l’intérieur d’un circuit entièrement clos formé de vaisseaux sanguins de divers calibres, répartis dans tout le corps. Les contractions du cœur assurent la circulation du sang.
Quatre valves dont deux atrio-ventriculaires (entre l'oreillette et le ventricule du cœur) et deux ventriculaires (entre le ventricule du cœur et l'artère) assurent la circulation unidirectionnel du sang dans l'organisme.

Quelques chiffres

  • Dans le corps d’un homme de 65 kilos, circulent 5 à 6 litres de sang, 4 à 5 litres chez une femme (augmentant jusqu'à 5 à 6 litres en cours de grossesse), dans celui d’un enfant, environ 3 litres et 250 millilitres pour un nouveau-né.
  • Dans la moelle rouge des os, naissent chaque jour environ :
    • 25 billions de globules rouges ; et l'organisme doit en produire 2 millions de nouveaux par seconde afin de garder un même nombre d'hématies.
    • plusieurs milliards de globules blancs. Toutefois, ils sont 600 fois moins nombreux que les globules rouges.
    • Pour un seul globule blanc, il y a environ 30 plaquettes et 600 globules rouges !

Groupe sanguin

Un groupe sanguin est une classification de sang reposant sur la présence ou l'absence de substance antigéniques héritées à la surface des globules rouges (hématies). Ces antigènes peuvent être des protéines, des glucides, des glycoprotéines ou des glycolipides, selon le système de groupe sanguin, et certains de ces antigènes sont également présents à la surface d'autres types de cellules de différents tissus.
Les divers groupes sanguins sont regroupés en systèmes. Appartiennent à un même système de groupes sanguins l'ensemble des épitopes ou phénotypes résultant de l'action des divers allèles d'un même gène ou de gènes étroitement liés.

Le sang est un tissu liquide que l’on peut facilement prélever sur un individu sain pour le transfuser à un individu malade. Or, malgré une composition cellulaire identique de ce tissu, il existe une variabilité, ou polymorphisme des divers éléments du sang entre les individus, ce qui rend impossible la transfusion entre certains groupes de personnes. On dit des personnes qui présentent une même caractéristique qu’elles appartiennent au même groupe sanguin. Jusqu’à une époque récente, ces caractéristiques ont été mises en évidence grâce à des anticorps spécifiques d’un épitope, déterminant antigénique reconnu spécifiquement par un anticorps. Ces épitopes, déterminant divers phénotypes, sont génétiquement transmis.
La découverte du système ABO, le premier de ces systèmes, en 1900, par Landsteiner a permis de comprendre pourquoi certaines transfusions sanguines étaient couronnées de succès, alors que d'autres se terminaient tragiquement.
Classification
Ces différences antigéniques entre les individus définissent les différents groupes sanguins et peuvent porter aussi bien sur les éléments figurés du sang, globules rouges, globules blancs, plaquettes, que sur les protéines circulantes, en particulier les immunoglobulines. Le terme groupe sanguin ayant été appliqué aux seuls groupes connus avant les années 1950, à savoir aux groupes érythrocytaires, et ce terme étant souvent compris et en règle générale utilisé de façon restrictive dans cette acception, ce sont ces derniers qui seront traités dans la suite du présent article. Enfin, historiquement, ce sont les transfusions d'érythrocytes qui ont posé des problèmes cliniques d'incompatibilité, les autres éléments du sang n'étant que peu impliqués dans des accidents transfusionnels immédiats d'origine immunologique.
Nous dirons cependant un mot sur chacun des autres systèmes de groupes, en adressant le lecteur aux articles traitant de façon plus détaillée chacune de ces questions, ou y faisant référence, comme simple polymorphisme ou allotypie.

Groupes sanguins leucocytaires

C'est en travaillant avec des anticorps anti-leucocytes, et en tentant d'identifier des groupes leucocytaires, que Jean Dausset a découvert le système HLA. Il s'agissait en fait des antigènes d'histocompatibilité présents sur toutes les cellules de l'organisme.
Les leucocytes, portent également des antigènes spécifiques, soit aux différentes catégories de lymphocytes, soit aux polynucléaires. Ces derniers portent divers antigènes regroupés en 5 systèmes, HNA1, HNA2, HNA3, HNA4 et HNA5 (HNA pour Human Neutrophil Alloantigen).
Les anticorps dirigés contre les globules blancs, susceptibles d'être contenus dans un plasma transfusé, qu'il s'agisse d'anti HLA ou d'anti HNA, peuvent induire un accident transfusionnel grave, le TRALI (transfusion related acute lung injury) qui consiste en une atteinte œdémateuse pulmonaire.

Groupes sanguins plaquettaires
Il s'agit des systèmes HPA (Human Platelet Antigens), au nombre de 6 : HPA1, HPA2, HPA3, HPA4, HPA5, et HPA15, tels que définis par le Comité de Nomenclature des Plaquettes, PNC (Platelet Nomenclature Committee) créé en 2003 en association avec l'ISBT et l'ISTH (Société Internationale de Thrombose et Hémostase). Le plus connu de ces systèmes étant le système HPA1, suivi du système HPA5, dont les anticorps anti HPA1-a et HPA5-b sont impliqués respectivement dans 80 % et 10 % des cas d'incompatibilités fœto-maternelles plaquettaires.
Un anticorps dans l'un de ces systèmes entraîne :
  • en cas d'incompatibilité fœto-maternelle, une thrombopénie chez le fœtus et le nouveau-né, causant parfois des hémorragies intracrâniennes qui peuvent être graves.
  • chez l'adulte, une transfusion inefficace en cas de transfusion de plaquettes incompatibles. Cette transfusion peut être exceptionnellement suivie d'un purpura post-transfusionnel où sont non seulement détruites immédiatement les plaquettes transfusées, mais également, par un mécanisme discuté, les propres plaquettes du patient.

Groupes sériques

Il s'agit des groupes Am, Gm, Km des immunoglobulines A, G, et de la chaîne légère Kappa, ainsi que du groupe ISf (Inhibiteur San Francisco, situé sur la chaîne lourde des IgG1). Ces systèmes, dont le premier a été découvert par Grubb et Laurell, sont déterminés grâce à une antiglobuline, par une technique d'inhibition d'agglutination. La technique est indiquée dans les articles : « discuter:Robin Coombs », et dans le paragraphe allotypie dans « discuter:anticorps ».

Groupes érythrocytaires

Il s'agit des premiers groupes sanguins qui ont été découverts (ABO, MNS), et le terme groupes sanguins, utilisé de façon isolée, désigne en règle et de façon restrictive les groupes érythrocytaires, sinon on utilise le terme groupe plaquettaire, leucocytaire, ou sérique.
Les groupes sanguins sont identifiés usuellement avec des anticorps (immuno-typage), mais d'autres sondes sont utiles. Par exemple la plupart des lectines agglutinent les érythrocytes, se liant aux antigènes de groupe sanguin.

Groupes sanguins (érythrocytaires)

Les principaux groupes sanguins sont ceux qui définissent les systèmes ABO, Rhésus et Kell, mais il en existe beaucoup d'autres. Ces trois systèmes sont les plus importants, en pratique. Le premier, ABO, car il entraîne un accident transfusionnel immédiat en cas de transfusion incompatible, et de ce fait a été le premier découvert. Le second, Rhésus, car l'immunogénicité de deux de ses antigènes (D, et c, surtout) entraîne très fréquemment des immunisations sources d'accidents ultérieurs et d'incompatibilités fœto-maternelles. Le troisième système, Kell, car l'antigène Kell est très immunogène, moins cependant que l'antigène RH1, D, et donne de ce fait, mais moins fréquemment, les mêmes complications.
La détermination du groupe dans ces trois systèmes en ABO (A, B, AB ou O), en Rhésus (+ ou -), ou en Kell (+ ou -) se base, comme pour tous les systèmes, sur les caractéristiques des antigènes présents à la surface des érythrocytes et, pour le système ABO, sur les anticorps présents dans le sang.
Nous donnons ici la liste des différents systèmes définis et référencés par l'ISBT en août 2008, avec dans l'ordre leur numéro, leur dénomination initiale ou commune, leur dénomination abrégée (symbole) officielle ISBT et HGNC, la nature de l'épitope ou de l'élément qui le porte, la localisation chromosomique, et le lien vers la référence OMIM. Enfin, selon la nomenclature de l'ISBT, dans chaque système, un numéro à 3 chiffres est attribué à chaque spécificité antigénique. Ainsi, dans le système ABO (001) quatre spécificités sont référencées : A=001, B=002, AB=003, A1=004. Dans le système MNS (002) nous arrivons au numéro 046, et dans le RH nous dépassons le numéro 050...

Aucun commentaire:

Le sang

Le sang est un liquide vital qui circule continuellement dans les vaisseaux sanguins et le coeur.
Ce liquide sert à diffuser le dioxygène (O2) et les éléments nutritifs nécessaires aux processus vitaux de tous les tissus du corps, et à transporter les déchets tels que le dioxyde de carbone (CO2) ou les déchets azotés vers les sites d'évacuation (intestins, reins, poumons). Il sert également à amener aux tissus les cellules et les molécules du système immunitaire, et à diffuser les hormones dans tout l’organisme.
C’est la moelle osseuse qui produit les cellules sanguines au cours d’un processus appelé hématopoïèse.

Éléments figurés
  • Érythrocytes ou hématies ou globules rouges (à peu près 99 %). Elles ne possèdent ni noyau ni organites, donc ne sont pas des cellules proprement dites. Elles contiennent l’hémoglobine (13 des composants du cytoplasme) qui permet de transporter l’oxygène ainsi que le fer mais aussi le dioxyde de carbone ou le monoxyde de carbone. Leur durée de vie est de 120 jours et leur destruction est opérée par le foie, la rate ou la moelle osseuse.
  • Leucocytes ou globules blancs (0,2 %), qui servent dans le système immunitaire à détruire les agents infectieux. Les leucocytes sont un ensemble hétéroclite de cellules :
    • les granulocytes ou polynucléaires (neutrophiles, éosinophiles, basophiles) ;
    • les lymphocytes ;
    • les monocytes.
  • Thrombocytes ou plaquettes sanguines ou plaquettes (0,6 - 1,0 %), responsables de la formation du clou plaquettaire débutant la coagulation sanguine. Ce ne sont pas des cellules car elles ne contiennent pas de noyau, mais des fragments de cytoplasme provenant de leurs précurseurs, les mégacaryocytes (cellules géantes de la moelle osseuse).
Ces éléments figurés constituent 45 % du sang entier (voir hématocrite), ce sont toutes les cellules contenues dans le sang. Les 55 % restants constituent le plasma sanguin, un liquide jaunâtre qui est la phase liquide et sert de suspension pour le sang.

Plasma sanguin
Le plasma est la composante liquide du sang dans laquelle baignent les éléments figurés ; cependant il faut bien comprendre que les éléments figurés ne font pas partie du plasma. Il est constitué d’eau, d’ions et de différentes molécules qui sont ainsi transportées à travers l’organisme. Il faut encore le distinguer du sérum sanguin dont la définition est un peu différente de celle du plasma sanguin.
Voici les principales molécules du soluté du plasma : (le solvant étant bien évidemment l'eau)
  • le glucose ;
  • les lipides ;
  • les hormones (qui peuvent être des protéines, des acides aminés modifiés, des stéroïdes, ou des lipides modifiés dont les prostaglandines et les thromboxanes) ;
  • des protéines du complément qui ont un rôle majeur dans l’initiation de la réponse immunitaire et de l’inflammation ;
  • des protéines de la coagulation sanguine (les facteurs de coagulation).
Fonctions
  • Une fonction de transport : Le sang (liquide circulant) assure une double fonction de transport, il distribue l’oxygène et les nutriments nécessaires au fonctionnement et à la survie de toutes cellules du corps et en même temps, récupère le dioxyde de carbone et les déchets (urée) qui résultent de l’activité de tout organe vivant ;
  • Le sang est constitué d’un liquide presque incolore très riche en eau (le plasma) dans lequel baignent des globules rouges, des globules blancs et des coagulants ;
  • Le sang s’enrichit en nutriments et reçoit une grande partie de l’eau contenue dans les aliments ;
  • Le sang se débarrasse des déchets collectés (dioxyde de carbone, etc) et s’enrichit en oxygène dans les poumons ;
  • Le sang se débarrasse de son excès d’eau ; l’urine (de l’eau contenant des déchets) est « fabriquée » par les reins ;
  • Seuls les globules rouges, qui contiennent de l’hémoglobine, donnent au sang sa couleur rouge. Leur nombre est considérable (4 500 000 par mm3 de sang) et leur fonction essentielle est le transport de l’oxygène et du dioxygène. Ces derniers se fixent en effet sur l’hémoglobine, facilités par sa forme de disque biconcave (région centrale : 0.8µm, région périphérique : 2.6µm) la plus apte a une fixation maximale.
Sang chez l’être humain

Le sang chez l'Homme représente 7 à 8 % de sa masse corporelle.
Les artères conduisent le sang du cœur vers les poumons et vers tous les autres organes. Elles sont le réservoir de pression du système cardio-vasculaire.
Les veines ramènent le sang des poumons ou de tout autre organe vers le cœur. La proportion volumique de sang y est plus grande que dans les artères. Elles servent de réservoir sanguin à la pompe cardiaque.
L'ensemble du flux sanguin passe par les poumons avant de repartir vers un autre organe.
Le cœur est une pompe foulante et aspirante qui éjecte le sang dans les vaisseaux de l’appareil circulatoire et qui contribue au retour veineux.
Le sang circule, toujours dans le même sens, à l’intérieur d’un circuit entièrement clos formé de vaisseaux sanguins de divers calibres, répartis dans tout le corps. Les contractions du cœur assurent la circulation du sang.
Quatre valves dont deux atrio-ventriculaires (entre l'oreillette et le ventricule du cœur) et deux ventriculaires (entre le ventricule du cœur et l'artère) assurent la circulation unidirectionnel du sang dans l'organisme.

Quelques chiffres

  • Dans le corps d’un homme de 65 kilos, circulent 5 à 6 litres de sang, 4 à 5 litres chez une femme (augmentant jusqu'à 5 à 6 litres en cours de grossesse), dans celui d’un enfant, environ 3 litres et 250 millilitres pour un nouveau-né.
  • Dans la moelle rouge des os, naissent chaque jour environ :
    • 25 billions de globules rouges ; et l'organisme doit en produire 2 millions de nouveaux par seconde afin de garder un même nombre d'hématies.
    • plusieurs milliards de globules blancs. Toutefois, ils sont 600 fois moins nombreux que les globules rouges.
    • Pour un seul globule blanc, il y a environ 30 plaquettes et 600 globules rouges !

Groupe sanguin

Un groupe sanguin est une classification de sang reposant sur la présence ou l'absence de substance antigéniques héritées à la surface des globules rouges (hématies). Ces antigènes peuvent être des protéines, des glucides, des glycoprotéines ou des glycolipides, selon le système de groupe sanguin, et certains de ces antigènes sont également présents à la surface d'autres types de cellules de différents tissus.
Les divers groupes sanguins sont regroupés en systèmes. Appartiennent à un même système de groupes sanguins l'ensemble des épitopes ou phénotypes résultant de l'action des divers allèles d'un même gène ou de gènes étroitement liés.

Le sang est un tissu liquide que l’on peut facilement prélever sur un individu sain pour le transfuser à un individu malade. Or, malgré une composition cellulaire identique de ce tissu, il existe une variabilité, ou polymorphisme des divers éléments du sang entre les individus, ce qui rend impossible la transfusion entre certains groupes de personnes. On dit des personnes qui présentent une même caractéristique qu’elles appartiennent au même groupe sanguin. Jusqu’à une époque récente, ces caractéristiques ont été mises en évidence grâce à des anticorps spécifiques d’un épitope, déterminant antigénique reconnu spécifiquement par un anticorps. Ces épitopes, déterminant divers phénotypes, sont génétiquement transmis.
La découverte du système ABO, le premier de ces systèmes, en 1900, par Landsteiner a permis de comprendre pourquoi certaines transfusions sanguines étaient couronnées de succès, alors que d'autres se terminaient tragiquement.
Classification
Ces différences antigéniques entre les individus définissent les différents groupes sanguins et peuvent porter aussi bien sur les éléments figurés du sang, globules rouges, globules blancs, plaquettes, que sur les protéines circulantes, en particulier les immunoglobulines. Le terme groupe sanguin ayant été appliqué aux seuls groupes connus avant les années 1950, à savoir aux groupes érythrocytaires, et ce terme étant souvent compris et en règle générale utilisé de façon restrictive dans cette acception, ce sont ces derniers qui seront traités dans la suite du présent article. Enfin, historiquement, ce sont les transfusions d'érythrocytes qui ont posé des problèmes cliniques d'incompatibilité, les autres éléments du sang n'étant que peu impliqués dans des accidents transfusionnels immédiats d'origine immunologique.
Nous dirons cependant un mot sur chacun des autres systèmes de groupes, en adressant le lecteur aux articles traitant de façon plus détaillée chacune de ces questions, ou y faisant référence, comme simple polymorphisme ou allotypie.

Groupes sanguins leucocytaires

C'est en travaillant avec des anticorps anti-leucocytes, et en tentant d'identifier des groupes leucocytaires, que Jean Dausset a découvert le système HLA. Il s'agissait en fait des antigènes d'histocompatibilité présents sur toutes les cellules de l'organisme.
Les leucocytes, portent également des antigènes spécifiques, soit aux différentes catégories de lymphocytes, soit aux polynucléaires. Ces derniers portent divers antigènes regroupés en 5 systèmes, HNA1, HNA2, HNA3, HNA4 et HNA5 (HNA pour Human Neutrophil Alloantigen).
Les anticorps dirigés contre les globules blancs, susceptibles d'être contenus dans un plasma transfusé, qu'il s'agisse d'anti HLA ou d'anti HNA, peuvent induire un accident transfusionnel grave, le TRALI (transfusion related acute lung injury) qui consiste en une atteinte œdémateuse pulmonaire.

Groupes sanguins plaquettaires
Il s'agit des systèmes HPA (Human Platelet Antigens), au nombre de 6 : HPA1, HPA2, HPA3, HPA4, HPA5, et HPA15, tels que définis par le Comité de Nomenclature des Plaquettes, PNC (Platelet Nomenclature Committee) créé en 2003 en association avec l'ISBT et l'ISTH (Société Internationale de Thrombose et Hémostase). Le plus connu de ces systèmes étant le système HPA1, suivi du système HPA5, dont les anticorps anti HPA1-a et HPA5-b sont impliqués respectivement dans 80 % et 10 % des cas d'incompatibilités fœto-maternelles plaquettaires.
Un anticorps dans l'un de ces systèmes entraîne :
  • en cas d'incompatibilité fœto-maternelle, une thrombopénie chez le fœtus et le nouveau-né, causant parfois des hémorragies intracrâniennes qui peuvent être graves.
  • chez l'adulte, une transfusion inefficace en cas de transfusion de plaquettes incompatibles. Cette transfusion peut être exceptionnellement suivie d'un purpura post-transfusionnel où sont non seulement détruites immédiatement les plaquettes transfusées, mais également, par un mécanisme discuté, les propres plaquettes du patient.

Groupes sériques

Il s'agit des groupes Am, Gm, Km des immunoglobulines A, G, et de la chaîne légère Kappa, ainsi que du groupe ISf (Inhibiteur San Francisco, situé sur la chaîne lourde des IgG1). Ces systèmes, dont le premier a été découvert par Grubb et Laurell, sont déterminés grâce à une antiglobuline, par une technique d'inhibition d'agglutination. La technique est indiquée dans les articles : « discuter:Robin Coombs », et dans le paragraphe allotypie dans « discuter:anticorps ».

Groupes érythrocytaires

Il s'agit des premiers groupes sanguins qui ont été découverts (ABO, MNS), et le terme groupes sanguins, utilisé de façon isolée, désigne en règle et de façon restrictive les groupes érythrocytaires, sinon on utilise le terme groupe plaquettaire, leucocytaire, ou sérique.
Les groupes sanguins sont identifiés usuellement avec des anticorps (immuno-typage), mais d'autres sondes sont utiles. Par exemple la plupart des lectines agglutinent les érythrocytes, se liant aux antigènes de groupe sanguin.

Groupes sanguins (érythrocytaires)

Les principaux groupes sanguins sont ceux qui définissent les systèmes ABO, Rhésus et Kell, mais il en existe beaucoup d'autres. Ces trois systèmes sont les plus importants, en pratique. Le premier, ABO, car il entraîne un accident transfusionnel immédiat en cas de transfusion incompatible, et de ce fait a été le premier découvert. Le second, Rhésus, car l'immunogénicité de deux de ses antigènes (D, et c, surtout) entraîne très fréquemment des immunisations sources d'accidents ultérieurs et d'incompatibilités fœto-maternelles. Le troisième système, Kell, car l'antigène Kell est très immunogène, moins cependant que l'antigène RH1, D, et donne de ce fait, mais moins fréquemment, les mêmes complications.
La détermination du groupe dans ces trois systèmes en ABO (A, B, AB ou O), en Rhésus (+ ou -), ou en Kell (+ ou -) se base, comme pour tous les systèmes, sur les caractéristiques des antigènes présents à la surface des érythrocytes et, pour le système ABO, sur les anticorps présents dans le sang.
Nous donnons ici la liste des différents systèmes définis et référencés par l'ISBT en août 2008, avec dans l'ordre leur numéro, leur dénomination initiale ou commune, leur dénomination abrégée (symbole) officielle ISBT et HGNC, la nature de l'épitope ou de l'élément qui le porte, la localisation chromosomique, et le lien vers la référence OMIM. Enfin, selon la nomenclature de l'ISBT, dans chaque système, un numéro à 3 chiffres est attribué à chaque spécificité antigénique. Ainsi, dans le système ABO (001) quatre spécificités sont référencées : A=001, B=002, AB=003, A1=004. Dans le système MNS (002) nous arrivons au numéro 046, et dans le RH nous dépassons le numéro 050...

Aucun commentaire:

Concerts

VenueKings.com

Find Tickets for The Eagles at VenueKings.com! The Best Event Tickets in the Nation!

Get Fleetwood Mac Concert Tickets at VenueKings.com!